水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2021, Vol. 40 ›› Issue (12): 119-128.doi: 10.11660/slfdxb.20211211

• • 上一篇    

缆机吊重海量监测数据的吊运混凝土模式识别

  

  • 出版日期:2021-12-25 发布日期:2021-12-25

Pattern recognition of concrete lifting modes based on massive monitoring data of cable crane

  • Online:2021-12-25 Published:2021-12-25

摘要: 海量实时监测数据为缆机实际运行效率分析和工程现场调度优化提供了直接和可靠的研究基础。如何从庞杂的海量数据中准确快速地识别缆机的工作状态和吊运任务,从而提取吊运工作循环,是分析缆机吊运混凝土工作效率的关键问题。本文提出一种基于缆机吊重时序特征的吊运混凝土模式识别方法,以吊重的时序变化特征和状态区间平均吊重值定义缆机起吊、重载运行等工作状态,以工作状态的时序变化特征定义吊运混凝土模式;提取吊重参数的统计规律,定义模式识别标准模板,提出了“状态相似判别加状态罚函数”的吊运混凝土模式识别模型。针对两种特殊情况,即受大风或加速度影响造成缆索摆动时的吊重监测数据“假波动”,和缆机提升或卸料过程中意外停顿造成吊重的“假稳定”,本文构建了一种“孤点判别+多次迭代”的方法,修正状态识别结果。模型应用及工程实测数据分析表明,该模型能够快速准确地识别缆机工作模式、判别缆机吊运混凝土各工作状态的起止点、状态值和平均吊重,为缆机实际运行效率分析和调度优化等提供重要支撑。

关键词: 水利工程施工, 海量监测数据, 缆机, 吊运混凝土, 模式识别

Abstract: Massive real-time monitoring data of a concrete lifting cable crane provides as a direct, reliable research basis for analysis of its practical operation efficiency. How to identify accurately and quickly its working cycle and extract useful information from these data is a key issue for efficiency analysis. Therefore, we develop a pattern recognition method. The working state of a cable crane is defined by the rates of changes in the lifting weight and its average; its concrete lifting modes defined by a time series of its characteristic changes. Then, we extract the statistical law of weight lifting parameters and define a set of pattern recognition standard templates; a pattern recognition model of lifting concrete featured with state similarity recognition plus state penalty function is developed. Especially, in view of the false fluctuation in the monitoring data of the load caused by the wind or cable acceleration, and the false stability of the load caused by accidental pauses in weight lifting or unloading, we construct a method of discrimination of isolated points plus multiple iterations to identify and correct a working state. Application of this model and measured data analysis show that it identifies accurately and quickly the working modes of a cable crane, the start and end points of each working state, and its instant and average lifting weights, thus providing important support for practical operation efficiency analysis and scheduling optimization of cable cranes.

Key words: construction for hydraulic works, massive monitoring data, cable crane, lifting concrete, pattern recognition

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn