水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2021, Vol. 40 ›› Issue (12): 106-118.doi: 10.11660/slfdxb.20211210

• • 上一篇    下一篇

高拱坝施工仿真参数EMD-P-ILSTM动态更新模型研究

  

  • 出版日期:2021-12-25 发布日期:2021-12-25

EMD-P-ILSTM dynamic updating model for simulation parameters of high arch dam construction

  • Online:2021-12-25 Published:2021-12-25

摘要: 施工仿真参数更新是确保建设期施工进度仿真准确性的关键。但现有的参数更新方法难以对参数局部非线性和波动性变化特征进行学习和提取,更新精度有待进一步提高。为此,本文利用深度学习模型能够深度挖掘参数序列隐含信息的优势,采用分解-预测-集成的建模新思路,提出高拱坝施工仿真参数EMD-P-ILSTM动态更新模型。该模型利用基于自适应步长改进的天牛须算法对长短期记忆网络模型的超参数进行自动寻优,以提高建模效率。采用经验模态分解法将参数序列分解为多个平稳的子序列,并利用偏自相关函数自动选取各子序列的时间窗口。工程实例表明,相比于未改进的LSTM、BPNN、SVM和贝叶斯更新方法,本文模型能有效跟踪施工参数的复杂变化,具有更高的预测精度。

关键词: 高拱坝, 施工仿真参数更新, 长短期记忆网络, 改进天牛须算法, 经验模态分解, 偏自相关函数

Abstract: For construction schedule simulation, parameters updating is the key to ensuring its accuracy. However, it is difficult for its existing methods to learn and extract the local nonlinear fluctuation characteristics of the parameters, and the updating accuracy needs further improvement. This paper takes advantage of the deep learning model's capability of mining more hidden information from parameter sequences and adopts a new modeling idea of decomposition-predict-integration. We construct a new dynamic updating model of construction simulation parameters using the techniques of empirical mode decomposition, and improved long short-term memory (EMD-P-ILSTM). To improve modeling efficiency, we use an improved Beetle Antennae algorithm based on an adaptive step factor to automatically optimize the hyperparameters of the LSTM network model. The EMD method is used to decompose a parameter sequence into several stationary sub-sequences; a partial autocorrelation function is used to select a time window for each sub-sequence automatically. A case study shows that, compared with the unimproved LSTM, BPNN, SVM, or Bayesian update method, our new model can track effectively the complicated changes in construction parameters and achieve a higher prediction accuracy.

Key words: high arch dam, construction simulation parameter update, long-short-term memory network, improved Beetle Antennae algorithm, empirical mode decomposition, partial autocorrelation function

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn