水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2021, Vol. 40 ›› Issue (10): 160-172.doi: 10.11660/slfdxb.20211015

• • 上一篇    

耦合时空相关特性的大坝变形动态监控模型

  

  • 出版日期:2021-10-25 发布日期:2021-10-25

Dynamic monitoring model for dam deformation with spatiotemporal coupling correlation characteristics

  • Online:2021-10-25 Published:2021-10-25

摘要: 大坝变形性态是多种因素长期共同作用的结果,其演变模式包括时间和空间两个维度。然而,当前大坝变形智能建模较少综合考虑时空二维特征,原型观测资料中蕴含的大量时空信息亟待进一步挖掘。针对该问题,本文从单测点时序相关性和多测点空间关联性出发,提出构建一种耦合时空两个维度相关特性的大坝变形动态监控模型。该模型将门控循环单元(gated recurrent unit,GRU)神经网络作为核心层,建模学习历史变形数据内在时变规律,通过迭代提取有效变形因子来构造空间维度特征,并引入软注意力机制改进GRU隐藏状态的概率权重分配规则,实现对关键信息的自适应学习。以丰满混凝土重力坝多测点变形监测数据为例,验证了该模型的有效性。结果表明,所提出的监控模型能准确模拟大坝变形动态演变过程,且与常规监控模型相比,其外推预测精度更高,为大坝安全监控提供了新的方法和手段。

关键词: 大坝变形监控, 时空相关特性, 动态建模学习, 门控循环单元神经网络, 注意力机制

Abstract: Dam deformation behavior is a consequence of long-term interaction of many factors, and its evolution pattern usually involves two dimensions: time and space. However, previous intelligent modeling of dam deformation lacks a comprehensive consideration of time and space variations, and a large amount of spatiotemporal information needs to be further excavated from the prototype observation data. This paper develops a dynamic monitoring model for dam deformation with spatiotemporal coupling correlation characteristics from two view angles: time-series correlation for a single measurement point, and spatial correlation of multiple measurement points. This model takes the gated recurrent unit (GRU) neural networks as core layers to model and learn the inherent time-varying patterns in a historical deformation data series, and constructs the features of spatial variations through iterative extraction of effective deformation factors. It uses a soft attention mechanism to improve the probability weight allocation rule of the GRU hidden states, thus achieving adaptive learning of key information. Its effectiveness is verified in a case study of the Fengman concrete gravity dam. The results show that this monitoring model can accurately simulate the dynamic deformation evolution of a dam, and are more accurate in extrapolation prediction than conventional monitoring models.

Key words: dam deformation monitoring, spatiotemporal correlation characteristics, dynamic modeling and learning, gated recurrent unit neural networks, attention mechanism

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn