|
||
水力发电学报 ›› 2021, Vol. 40 ›› Issue (10): 160-172.doi: 10.11660/slfdxb.20211015
• • 上一篇
摘要: 大坝变形性态是多种因素长期共同作用的结果,其演变模式包括时间和空间两个维度。然而,当前大坝变形智能建模较少综合考虑时空二维特征,原型观测资料中蕴含的大量时空信息亟待进一步挖掘。针对该问题,本文从单测点时序相关性和多测点空间关联性出发,提出构建一种耦合时空两个维度相关特性的大坝变形动态监控模型。该模型将门控循环单元(gated recurrent unit,GRU)神经网络作为核心层,建模学习历史变形数据内在时变规律,通过迭代提取有效变形因子来构造空间维度特征,并引入软注意力机制改进GRU隐藏状态的概率权重分配规则,实现对关键信息的自适应学习。以丰满混凝土重力坝多测点变形监测数据为例,验证了该模型的有效性。结果表明,所提出的监控模型能准确模拟大坝变形动态演变过程,且与常规监控模型相比,其外推预测精度更高,为大坝安全监控提供了新的方法和手段。
京ICP备13015787号-3 版权所有 © 2013《水力发电学报》编辑部 编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |