水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2021, Vol. 40 ›› Issue (10): 147-159.doi: 10.11660/slfdxb.20211014

• • 上一篇    下一篇

基于时序分解与深度学习的堆石坝变形预测

  

  • 出版日期:2021-10-25 发布日期:2021-10-25

Deformation prediction of rockfill dams based on time series decomposition and deep learning

  • Online:2021-10-25 Published:2021-10-25

摘要: 堆石坝变形监测数据是一种时间序列数据,可以用时序预测模型挖掘其规律并进行预测。本文利用时序预测模型提出一种堆石坝变形预测方法,该方法首先采用时间序列分解(seasonal-trend decomposition procedure based on loess,STL)将堆石坝变形监测数据分解为趋势项、周期项和不规则波动三部分,再使用经验模态分解(empirical mode decomposition,EMD)对不规则波动平稳化处理,最后利用长短期记忆网络(long short-term memory,LSTM)预测分解后的序列,并利用贝叶斯优化方法进行超参数优化。为评估该方法的预测效果,以水布垭面板堆石坝为例,通过控制训练时长、预测时长、离群值数目等变量进行多组仿真实验,并与其他时序预测模型对比。结果表明该方法预测精度较高,适用性较广,对于堆石坝的性状评估具有一定的应用价值。

关键词: 堆石坝, 变形预测, 时间序列分解, 经验模态分解, LSTM, 贝叶斯优化

Abstract: Deformation monitoring data of a rockfill dam are a time series that can be mined using a time series prediction model for analysis of its variation trend. This paper presents a new method for rockfill dam deformation prediction. First, we use a seasonal-trend decomposition procedure based on loess (STL) to decompose the deformation monitoring data of a rockfill dam into three parts: secular trend, seasonal variation, and irregular variation. Then, an empirical mode decomposition (EMD) method is used to stabilize the irregular variation. Finally, we adopt a long short-term memory (LSTM) technique to predict the decomposed sequences and a Bayesian optimization method to optimize the parameters. To evaluate the accuracy of this method, we numerically simulate the Shuibuya concrete faced rockfill dam for different training time, prediction time, and numbers of outliers; and compare it with other time series prediction models. The results show our new method is more accurate and applicable to evaluating rockfill dam performance.

Key words: rockfill dam, deformation prediction, time series decomposition, empirical mode decomposition, LSTM, Bayesian optimization

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn