水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2021, Vol. 40 ›› Issue (9): 122-131.doi: 10.11660/slfdxb.20210913

• • 上一篇    下一篇

混凝土坝变形的长期预测模型与应用

  

  • 出版日期:2021-09-25 发布日期:2021-09-25

Long-term deformation prediction model of concrete dams and its application

  • Online:2021-09-25 Published:2021-09-25

摘要: 变形预测对混凝土坝的安全运行和风险管控意义重大,针对现有方法难以实现长期精准预测并且建模困难等问题,采用多元回归(MR)模型将变形序列分解为水压、温度、时效和余项分量,引入季节差分自回归移动平均(SARIMA)模型对余项中的非稳定不规则信号进行信息挖掘,以此建立混凝土坝变形的长期预测模型。实例分析表明,该模型相对简单易行,具有较好的精度和稳定性,在具备长期观测资料且观测精度较高的具有周期性和趋势性的混凝土大坝变形的长期预测中具有一定的工程应用价值。

关键词: 混凝土坝, 变形预测, 序列分解, SARIMA模型, 深度学习

Abstract: Deformation prediction is of great significance to the safe operation and risk control of concrete dams. In view of the difficulties in long-term accurate prediction and modeling, this study uses a MR model to decompose a deformation sequence into the components of hydrostatic pressure, temperature, aging and remainder, and apply the SARIMA model to mine the information buried in the unstable and irregular sequences of the remainder component. Thus, we have developed a new MR-SARIMA prediction model of long-term deformation of concrete dams. Analysis and application to a dam case show that this new simple model is easy to use, more accurate, more stable, and obviously superior in the prediction of long-term concrete dam deformation featured with periodicity and trends to the previous models reported.

Key words: concrete dam, deformation prediction, sequence decomposition, SARIMA, deep learning

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn