水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2021, Vol. 40 ›› Issue (5): 99-109.doi: 10.11660/slfdxb.20210510

• • 上一篇    下一篇

多源数据驱动的黄河未来水沙变化趋势研究

  

  • 出版日期:2021-05-25 发布日期:2021-05-25

Study on future trends of water and sediment changes in Yellow River based on multisource data

  • Online:2021-05-25 Published:2021-05-25

摘要: 由于近年来气候变化和人类活动的双重影响,导致黄河水沙锐减,对未来变化趋势作出可靠判断十分必要。利用基于多种机器学习特征筛选的统计模型方法,采用潼关站实测径流量与输沙量、欧洲中期天气预报中心中尺度数据及不同气候变化路径的CO2排放浓度下全球气候模式数据对未来水沙作了预测。结果表明,在rcp26情景下,潼关站未来10年、20年、50年的断面径流量为234.21亿m3、227.52亿m3、219.6亿m3,与2000—2016年平均径流量228.86亿m3相比,径流量增加了约2.3%、-0.5%、4.0%;同期的断面输沙量预测结果为2.68亿t、3.44亿t、5.72亿t,与2000—2016年平均输沙量2.48亿t相比增加了约7.9%、38.4%、130.2%,表明黄河流域“水少沙多”的形势依然是未来较长一个时期的主要特征。

关键词: 黄河, 水沙预测, 多元回归分析, 数据驱动

Abstract: Due to the double impacts of climate changes and human activities in recent years, runoff and sediment transport in the Yellow have been reduced sharply, so it is necessary to make a reliable judgment on the future trends of these changes. Based on the method of feature selection and multiple regression analysis, this paper predicts the future runoff and sediment conditions of the river, using the sediment transport and runoff data measured at the Tongguan station, the mesoscale data from the European medium-range weather forecast center, and the global climate model data of CO2 emission concentrations along different climate change paths. The results show that under the scenario RCP26 in the next 10, 20 and 50 years, the runoff at the Tongguan station will be 2.34×1010 m3, 2.28×1010 m3 and 2.2×1010 m3 respectively, increased by 2.3%, -0.5% and -4.0% in comparison with the average of 2.29×1010 m3 over 2000-2016; the sediment discharge will be 2.68×108 t, 3.44×108 t and 5.72×108 t, increased by 7.9%, 38.4% and 130.2% respectively against the 2000-2016 average of 2.48×108 t. This indicates the less water and more sand feature of the Yellow basin will remain in place for quite a long period in the future.

Key words: Yellow River, runoff and sediment prediction, multiple regression analysis, data-driven

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn