水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2021, Vol. 40 ›› Issue (5): 35-43.doi: 10.11660/slfdxb.20210504

• • 上一篇    下一篇

考虑历史洪水不确定性的峰量联合频率分析

  

  • 出版日期:2021-05-25 发布日期:2021-05-25

Joint frequency analysis of flood discharge and volume considering uncertainties of historical flood events

  • Online:2021-05-25 Published:2021-05-25

摘要: 洪水事件一般具有多个特征属性,多变量联合分析可以全面分析洪水过程的统计特征。本文依据Copula函数,建立考虑定量和非定量历史洪水的不连续序列峰量联合洪水频率分析模型,选用遗传算法对模型参数进行寻优,并采用最大可能组合法和同频率组合法计算不同重现期设计洪水,通过变化置信区间分析历史洪水不确定性变化对参数估计与设计洪水的影响。以长江干流宜昌水文站为研究案例,结果表明,将历史洪水考虑为不定量时,其参数估计结果更为合理,更符合洪峰和时段洪量之间的关系。设计洪水值随着历史洪水置信区间的增加而降低,并随着重现期的增加,下降幅度更大。

关键词: Copula函数, 多变量联合频率分布, 洪水频率分析, 遗传算法, 历史洪水, 宜昌水文站

Abstract: Generally, flood events have several characteristic attributes, and the time variations in these attributes can be comprehensively analyzed using multivariate flood frequency analysis. This study develops a peak discharge-flood volume joint frequency analysis model for discontinuous sequences based on the Copula function, considering both quantitative and non-quantitative historical floods and using a genetic algorithm to estimate the model parameters. And the influence of uncertain changes in historical floods on parameter estimation and design floods is analyzed. This model is applied in a case study of the Yichang hydrologic station that has a systematic gauge record and a historical flood record. Results show that parameter estimation is more reasonable when the peak discharges of a historical flood event are described using confidence intervals with lower and upper bounds, and in this case the estimates of flood frequency analysis agree better with the field observed relationship of peak discharge versus flood volume. The peak discharge of the design flood is decreased with an increase in its confidence interval, and the decrease becomes larger at a longer recurrence period.

Key words: copula function, multivariate joint frequency distribution, flood frequency analysis, genetic algorithm, historical flood, Yichang hydrologic station

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn