水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2021, Vol. 40 ›› Issue (4): 114-126.doi: 10.11660/slfdxb.20210412

• • 上一篇    

隧洞围岩参数反演智能融合模型与分析方法

  

  • 出版日期:2021-04-25 发布日期:2021-04-25

Intelligent fusion model and analysis method for rock parameter inversion of water diversion tunnel

  • Online:2021-04-25 Published:2021-04-25

摘要: 围岩力学参数反演分析一直是岩土工程研究的热点问题, 对于解决岩土试验不足条件下岩土力学参数的取值具有重要意义。为了获得更为合理准确的引水隧洞围岩力学参数,本文提出了一种融合多种机器学习算法的智能反演模型与分析方法。首先利用正交试验法设计了25组围岩力学参数,同时采用FLAC3D数值模型计算得到目标断面监测点的位移值,通过参数灵敏性分析得到围岩力学参数对测点位移的影响程度。然后基于25组数据针对弹性模量、泊松比、黏聚力和内摩擦角四种不同的反演目标,选取不同种类的算法分别构建智能融合模型。最后,以青海“引大济湟”引水隧洞工程为工程实例,分析围岩力学参数对测点位移的影响由大到小依次为弹性模量、泊松比、黏聚力、内摩擦角;利用所建立的融合模型进行围岩参数反演分析,结合FLAC3D将所得围岩力学参数进行正演计算,得到拱顶沉降,拱底隆起和左右拱腰位移与现场实测值的相对误差分别为5.01%、3.21%、3.87%和4.17%,相对误差值均小于其他单个模型,表明所提出的反演智能融合模型与分析方法更为合理可行。

关键词: 引水隧洞, 围岩力学参数, 参数反演, 智能融合模型, 数值模拟, 正交试验

Abstract: Back analysis of the mechanical parameters of surrounding rocks using a method without sufficient geotechnical tests, has been at the forefront in geotechnical engineering research. To obtain more reasonable and accurate surrounding rock parameters for a water diversion tunnel, an intelligent inversion model integrating multiple machine learning algorithms is developed, and the influence of the parameters on tunnel displacement is examined via sensitivity analysis. Parameters of 25 groups are designed using orthogonal experiment, and the displacements at the monitoring points are calculated through FLAC3D simulations. Then, based on these data, different algorithms are selected to construct an intelligent fusion model for calculations of elastic modulus, Poisson's ratio, cohesion, and internal friction angle. Finally, through a case study of the Yindajihuang water diversion tunnel in Qinghai, the influence of mechanical parameters of surrounding rocks on its displacements is analyzed. By back analysis using this model and FLAC3D forward calculations of the parameters, the settlements at the different positions are obtained with the errors of 5.01%, 3.21%, 3.87% and 4.17% in calculations of the crown settlement, bottom heave, and left and right spandrel displacements respectively relative to on-site measurements. These relative errors, smaller than those of the single models, indicate our intelligent inversion fusion model and analysis method are a significant improvement on surrounding rock parameter calculations.

Key words: diversion tunnel, mechanical parameters of surrounding rock mass, parameter inversion, intelligent fusion model, numerical simulation, orthogonal experiment

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn