水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2021, Vol. 40 ›› Issue (2): 234-246.doi: 10.11660/slfdxb.20210224

• • 上一篇    

水工混凝土裂缝像素级形态分割与特征量化方法

  

  • 出版日期:2021-02-25 发布日期:2021-02-25

Pixel-level shape segmentation and feature quantification of hydraulic concrete cracks based on digital images

  • Online:2021-02-25 Published:2021-02-25

摘要: 混凝土开裂问题在水工建筑物主体结构中普遍存在,裂缝检测一直是水工混凝土结构安全鉴定的重要内容。数字图像处理技术因具有效率高、成本低等优势而被广泛应用于结构表面裂缝检测中,形态分割与特征量化是其核心任务。针对传统图像处理人工干预较多、泛化能力较弱等不足,本文提出了一种基于深度卷积神经网络的水工混凝土裂缝像素级形态分割与特征量化方法。该方法以U-net语义分割模型架构为基础,融合迁移学习技术,采用VGG16预训练网络强化编码器,提取多尺度高级语义信息,并通过改进交叉熵损失函数缓解样本类别不均衡问题,从而实现裂缝形态的精准分割。随后根据二值化分割掩膜,集成计算机视觉技术,给出了一整套定量计算裂缝面积、长度和宽度等几何特征参数的算法。以自制水工混凝土裂缝图像数据集为案例,通过仿真对比实验对所提方法的有效性和优越性进行了验证评估。结果表明,所设计深层网络的裂缝分割效果明显优于经典图像分割方法,且裂缝特征参数计算结果满足检测精度要求,以期为水工混凝土结构质量控制提供新的技术手段。

关键词: 水工混凝土, 裂缝检测, 语义分割, 特征量化, 深度学习

Abstract: Concrete cracking is common in the main structures of hydraulic buildings, and crack detection is always crucial to hydraulic engineering safety appraisal. Shape segmentation and feature quantification are the main tasks of digital image processing technology that has been widely used in structural surface crack detection due to its advantages of high efficiency and low cost, but traditional image processing has the shortcomings of more manual intervention and weaker generalization ability. This paper describes a new method for pixel-level shape segmentation and feature quantification of hydraulic concrete cracks based on deep convolutional neural networks. This method is on the basis of U-net semantic segmentation architecture and incorporates the transfer learning technology. Specifically, it uses a pre-trained VGG16 network to enhance the encoder and extract multi-scale and high-level semantic information, and alleviates class imbalance problems by improving the cross-entropy loss function, so that the crack shape can be accurately segmented. Then, we present a set of algorithms based on the binarized segmentation mask and computer vision technology for calculating key geometric parameters such as crack area, length and width. To verify and evaluate this crack detection method, we generate an image dataset of hydraulic concrete cracking through numerical simulations and conduct comparative experiments demonstrating its effectiveness and superiority. The results indicate that its segmentation effect is significantly better than that of classical image segmentation methods, and its calculations of crack feature parameters meet the required detection accuracy. Thus, it is a new useful technique for quality control of hydraulic concrete structures.

Key words: hydraulic concrete, crack detection, semantic segmentation, feature quantification, deep learning

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn