水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2021, Vol. 40 ›› Issue (2): 64-76.doi: 10.11660/slfdxb.20210207

• • 上一篇    下一篇

促进清洁能源消纳的多网联合优化与决策模型

  

  • 出版日期:2021-02-25 发布日期:2021-02-25

Optimization and decision-making model of multi-power grid joint operation for promoting clean energy consumption

  • Online:2021-02-25 Published:2021-02-25

摘要: 针对我国西南地区,弃电量大、清洁能源消纳受阻的问题,考虑清洁能源外送消纳的方式,本文以互联电网各自运行成本最小为目标,建立了多网联合多目标优化模型。基于小生境多目标粒子群算法对模型进行求解,应用基于熵权法的逼近理想解排序法进行最佳均衡解决策。以云南送广东、广西的“一个送端+两个受端”系统为例进行实例分析,结果表明:小生境多目标粒子群算法求解得到了均匀分布的近似Pareto前沿;基于熵权法的逼近理想解排序法决策得到的最佳均衡解显示,送端电网清洁能源消纳率达到100%,外送通道日利用小时数最大,表明多网联合优化计算能够大大提高清洁能源的消纳能力和外送通道的利用程度。

关键词: 清洁能源消纳, 多网联合, 外送, 小生境多目标粒子群算法, 逼近理想解排序法

Abstract: In Southwest China, tremendous power has been abandoned and the consumption of clean energies hindered. Aimed at this problem and the minimum operation cost of interconnected power grids, this study develops a multi-objective optimization model of multi-power grid joint operation, considering clean energy consumption and power sending-out. This model uses the niche multi-objective particle swarm optimization (NMOPSO) algorithm to seek Pareto frontiers, and the entropy-based technique for order preference by similarity to ideal solution (TOPSIS) to decide the optimal trade-off solution. It is applied in a case study of one sending grid plus two receiving grids system for power transmission from Yunnan to Guangdong and Guangxi. The results show that NMOPSO gives approximate Pareto frontiers with a uniform distribution; the TOPSIS optimal trade-off solution is featured with a clean energy consumption rate up to 100% of that of the sending grid and daily hours of the transmission channels in use reaching the greatest. Thus, our new method of optimization calculation greatly improves the grids’ consumption capability of clean energy and the use factor of transmission channels.

Key words: consumption of clean energy, multi-power grid joint, power sending-out, niche multi-objective particle swarm optimization, technique for order preference by similarity to ideal solution

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn