水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2021, Vol. 40 ›› Issue (1): 88-96.doi: 10.11660/slfdxb.20210109

• • 上一篇    下一篇

水电站变出力系数的神经网络估计方法

  

  • 出版日期:2021-01-25 发布日期:2021-01-25

Neural network estimation methods for varying output coefficients of hydropower stations

  • Online:2021-01-25 Published:2021-01-25

摘要: 围绕如何提高水电站中长期发电调度出力系数估计和出力过程计算精度的问题,引入神经网络数据挖掘技术,综合考虑水电站水头、发电流量等水电站关键状态信息对综合出力系数K的影响,建立了以水头、发电流量和入库流量为备选输入、以综合出力系数K为输出的三种神经网络模型,进而提出了三种水电站发电调度出力计算变K值的神经网络估计方法。结合三峡水电站多年实际运行资料,将本文提出的变K值估计方法与多种传统K值确定方法进行了综合对比。结果表明,本文提出的变K值估计模型或方法具有更高的K值估计、出力和发电量计算精度,为实现水电站中长期发电调度精细化出力计算提供了新途径,具有显著的工程应用价值。

关键词: 水电站, 中长期发电调度, 精细化出力计算, 变出力系数估计, 神经网络

Abstract: Focusing on how to improve the accuracy in estimating power output coefficients and power generation process of a hydropower station for its medium-long-term generation dispatching, this study develops three neural network models with an output of power output coefficient K and three alternative inputs–water head, generation flow, and inflow rate. These models adopt the neural network data mining technology and consider the influence of the station’s key status information comprehensively. And we formulate three neural network methods for estimating the varying K values in the station’s output calculations and compare the methods with traditional methods, in a case study of the many years’ operation data of the Three Gorges hydropower station. The results show our methods are more accurate in the estimations of K value, power output, and power generation, providing a new practical approach to the refined output calculation of medium-long-term power generation dispatching of hydropower stations.

Key words: hydropower station, medium-long term generation dispatching, refined power output calculation, estimation of varying power output coefficient, neural network

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn