水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2021, Vol. 40 ›› Issue (1): 76-87.doi: 10.11660/slfdxb.20210108

• • 上一篇    下一篇

基于多模型随机组合的水文集合预报方法研究

  

  • 出版日期:2021-01-25 发布日期:2021-01-25

Hydrological ensemble forecasting method based on stochastic combination of multiple models

  • Online:2021-01-25 Published:2021-01-25

摘要: 准确、可靠的水文预报是水资源开发利用的基础。集合预报以概率或区间的形式表征预报的不确定性,是未来水文预报研究的重点发展方向。本文提出了一种基于多模型随机组合的水文集合预报方法。首先通过加权形式将多种预报模型进行组合;再采用多目标优化算法率定各成员模型权重的上、下限;最后在优化的上、下限内随机生成权重以构建集合预报。以汉江黄金峡水库中长期径流预报为研究对象,考虑月、旬两种预见期,构建了六种单一预报模型,采用非支配排序遗传算法对权重进行优化后得到集合预报样本。结果表明:所提方法能更好地反映预报的不确定性,且均值预报结果明显优于贝叶斯模型平均法和单一确定性预报模型,具有一定竞争力。

关键词: 不确定性, 水文集合预报, 多模型组合, 多目标优化, 贝叶斯模型平均

Abstract: Accurate and reliable hydrological forecasting plays an important role in water resources development and utilization. Ensemble forecasting could characterize forecast uncertainty in the form of probability distributions or intervals, which is a key issue in hydrological forecasting. In this paper, we describe a new hydrological ensemble forecasting method, namely a stochastic combination of multiple models (SCMM) that integrates several hydrological models together with linear weights and then optimizes the upper and lower limits of the weights using a multi-objective evolutionary algorithm. Finally, it creates ensemble forecasting samples through stochastically generating the weights within the optimized interval. In a case study of the medium-long-term runoff forecasting of the Huangjinxia reservoir located on the Han River, we construct six statistical forecast models considering two lead times of a month and ten days, and optimize the limits of the weights using the improved nondominated sorting genetic algorithm (NSGA-II) algorithm, yielding the ensemble forecast samples. Results show our method can better reflect the forecast uncertainty and improve significantly the average forecasts over those of the Bayesian model averaging method or a deterministic forecast model, thus providing a promising hydrological forecasting technique.

Key words: uncertainty, hydrological ensemble forecast, combination of multiple models, multi-objective optimization, Bayesian model averaging

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn