水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2021, Vol. 40 ›› Issue (1): 13-23.doi: 10.11660/slfdxb.20210102

• • 上一篇    下一篇

实时监控下砾石土料掺配质量IBAS-BP动态评价

  

  • 出版日期:2021-01-25 发布日期:2021-01-25

IBAS-BP dynamic evaluation of gravelly soil blending quality under real-time monitoring

  • Online:2021-01-25 Published:2021-01-25

摘要: 传统的砾石土料掺配质量评价主要以旁站监理方式控制掺配施工参数,并以随机取样点的P5含量作为掺配质量评价指标。该方法不仅在掺配施工参数控制上易受人为因素干扰,而且在掺配质量评价过程中时效性差、随机性大,缺乏对掺配均匀性和其他粒径颗粒含量的考虑。针对上述问题,本文提出基于IBAS-BP神经网络的砾石土料掺配质量动态评价方法。首先,通过综合考虑砾石土料掺配过程涉及的各粒径颗粒含量,提出砾石土料掺配均匀性评价指标(blending uniformity value,BUV),用以反映掺配质量;其次,基于GPS定位、无线传输等技术提出一种砾石土料掺配实时监控方法,实现砾石土料掺配施工参数的实时监测与采集;最后,利用基于回溯思想和非线性步长调整函数改进的天牛须搜索(improved beetle antennae search,IBAS)算法优化的BP神经网络实现全仓面砾石土料掺配质量的动态评价。工程应用结果表明:掺配实时监控方法能有效监测掺配施工参数、保障施工质量,且BUV对掺配质量的评价结果与掺配后取样检测结果一致。此外,模型预测值与实测值相关系数达0.953,预测值与实测值的平均值误差和标准差误差分别为0.23%和6.17%,与常用回归模型相比,本文模型表现出一致性、代表性和优越性。

关键词: 砾石土料, 掺配质量, 掺配均匀性评价指标, 实时监控方法, IBAS-BP神经网络

Abstract: The traditional method of gravelly soil blending quality evaluation mainly uses supervision of the side station to control its blending construction parameters, and takes the P5 content of a randomly sampled point as the blending quality evaluation index. It is not only subjected to human factors but also limited to the poor timeliness and great randomness, and is hard to truly reflect the uniformity of blending. To solve these problems, we present a new dynamic method for evaluating gravelly soil blending quality based on an IBAS-BP neural network. First, a blending uniformity value (BUV) is worked out to reflect blending quality through a comprehensive consideration of the contents of different particle sizes; then, we develop a new method that can achieve real-time monitoring and collection of the construction parameters of gravelly soil blending based on GPS positioning, wireless transmission and so on. Finally, to realize the dynamic evaluation of the whole work unit, we adopt a BP neural network that is optimized by the Beetle Antennae Search (BAS) algorithm using the backtracking idea and the non-linear step adjustment function. Engineering application shows that the blending quality evaluated using BUV agrees with the test results sampled after blending, and our monitoring method is effective and applicable. Comparison of the model predictions with measurements gives a correlation coefficient of 0.953, an average error of 0.23%, and a standard deviation error of 6.17%, thus improving consistency, representativeness and superiority over traditional regression models.

Key words: gravelly soil, blending quality, blending uniformity value, real-time monitoring, IBAS-BP neural network

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn