水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2020, Vol. 39 ›› Issue (12): 104-112.doi: 10.11660/slfdxb.20201210

• • 上一篇    下一篇

基于SVD和DBN的水电机组故障诊断

  

  • 出版日期:2020-12-25 发布日期:2020-12-25

Fault diagnosis of hydroelectric sets based on SVD and DBN

  • Online:2020-12-25 Published:2020-12-25

摘要: 针对水电机组早期故障信号信噪比低的问题,本文将奇异值分解(SVD)和深度置信网络(DBN)相结合进行故障诊断。首先,利用包含噪声的振动信号构造Hankel矩阵,对其进行奇异值分解,采用奇异值差分谱法选取有效奇异值进行相空间重构,实现降噪的目的;然后,对降噪后的振动信号进奇异值分解,用所得的整个奇异值序列构造特征向量;最后,建立深度置信网络分类器模型,实现水电机组的故障诊断。同时,将所提方法与BP神经网络,多分类支持向量机进行对比。结果表明,本文所提方法能够更加可靠高效地识别故障类型,具有一定的应用价值。

关键词: 水电机组, 故障诊断, 奇异值分解, 深度置信网络

Abstract: In order to solve the problem of low signal-to-noise ratio of the early faults of hydroelectric sets, Singular Value Decomposition (SVD) and Deep Belief Network (DBN) are combined for fault diagnosis in this study. First, a Hankel matrix was constructed by using a vibration signal containing noise to decompose its singular values; and effective singular values, selected through the singular value difference spectrum method, were used to reconstruct a phase space and achieve noise reduction. Then, singular value decomposition was applied to the signals denoised, and the resulted singular value sequence was used to construct a feature vector. Finally, a DBN classifier model was developed to realize the fault diagnosis of hydroelectric sets and compared with BP neural network and multi-class support vector machine. The results show this method can identify the fault type of hydroelectric sets more reliably and efficiently.

Key words: hydroelectric sets, fault diagnosis, singular value decomposition, deep belief network

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn