水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2020, Vol. 39 ›› Issue (12): 25-36.doi: 10.11660/slfdxb.20201203

• • 上一篇    下一篇

鄱阳湖水位时空演变驱动因子研究

  

  • 出版日期:2020-12-25 发布日期:2020-12-25

Study on driving factors of temporal and spatial evolution of water level in Poyang Lake

  • Online:2020-12-25 Published:2020-12-25

摘要: 近年来,鄱阳湖水位发生了一定程度的变化,威胁到湖泊湿地生态安全。本文首先采用Mann-Kendall法分析1990—2016年鄱阳湖湖区水位变化特征。然后构建BP神经网络模型模拟湖区水位,并通过情境分析研究长江干流流量、鄱阳湖子流域入湖流量以及地形对湖区水位变化贡献率的时空特征。从时间特征上看,长江干流流量是各站7—10月月平均水位下降的主要驱动因子,地形是鄱阳湖枯水期水位下降的主要驱动因子;从空间特征上看,长江干流流量对各站7—11月月均水位的拉低效应表现为星子站>都昌站>棠荫站>康山站,地形对各站月均水位拉低效应总体表现为都昌站>星子站>棠荫站>康山站,地形变化是造成都昌站水位变幅最大的主要原因。

关键词: 水位变化, BP神经网络模型, 贡献率, 时空特征, 鄱阳湖

Abstract: In recent years, water level in Poyang Lake has changed significantly, threatening the ecological security of wetlands. First, this paper uses the Mann-Kendall method to analyze water level changes in this lake in the period of 1990 to 2016.Then, we construct a BP neural network model for simulation of the lake water level, and quantify through scenario analysis the temporal and spatial characteristics of the contribution made to the lake level change by the flow changes in the Yangtze mainstream, lake inflows from the Poyang’s sub-basins, and the topographic change. In time evolution, flow variations in the Yangtze mainstream is the main driving factor of the decreases in the average monthly water level at all the hydrological stations from July through September, and topography is the main driving factor of the decreases in the Poyang’s water level in dry season. Spatially, in the period of July to November, the pull down effects of the Yangtze mainstream flow on the monthly average water levels at different stations rank in a decreasing order as Xingzi station, Duchang station, Tangyin station, and Kangshan station; the pull down effects of topography rank as Duchang station, Xingzi station, Tangyin station, and Kangshan station. Changes in topography are the major cause of the maximum water level variations that occur at the Duchang station.

Key words: water level change, BP neural network model, contribution rate, spatiotemporal characteristics, Poyang Lake

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn