水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2020, Vol. 39 ›› Issue (11): 21-30.doi: 10.11660/slfdxb.20201103

• • 上一篇    下一篇

基于面板时空模型的锦屏一级大坝变形性态分析

  

  • 出版日期:2020-11-25 发布日期:2020-11-25

Deformation behavior analysis of Jinping arch dam based on spatiotemporal model of variable intercept panel data

  • Online:2020-11-25 Published:2020-11-25

摘要: 拱坝变形性态是多因子耦合共同作用的结果,具有时空二维的演化规律和分布特征。本文基于变截距面板数据时空模型,充分利用多测点变形资料,研究了锦屏一级大坝变形性态的变化规律,解决了常规统计模型仅从时序上考察单点变形性态的不足。结果表明:模型可准确感知反馈坝体变形响应的时空特征,良好的拟合精度与外延性确保了建模的正确性。此外,模型具有控制异质性的特点,可精准评价各分量对坝体特征区域的影响,弥补了常规模型的不足;模型还具备降低多重因子共线性、抗差性等优良性质,为大坝安全在线监控提供了理论依据和技术支持。

关键词: 面板数据, 时空模型, 安全监测, 变形性态, 分析与预测

Abstract: The deformation behaviors of an arch dam that are determined by multi-factor coupling are usually characterized by variations in space and time. Based on a spatiotemporal model of variable intercept panel data, this study makes full use of the deformation data from an array of gauging points at Jinping arch dam to examine its deformation behaviors, and solves the problem of conventional statistical models that are limited to a single data point of the time sequence in dam deformation analysis. The results show this panel model accurately detects the spatiotemporal characteristics of dam deformation responses and is validated by its good fitting accuracy and extension. In addition, it is capable of controlling the differences between gauging points and accurately evaluating the impact of each component on different zones of the dam body, thereby remedying the shortcoming of conventional models. And it manifests lower multi-factor collinearity and robustness among other excellent properties and thus helps promote the level of online dam safety monitoring.

Key words: panel data, spatiotemporal model, safety monitoring, deformation behavior, analysis and prediction

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn