|
||
水力发电学报 ›› 2020, Vol. 39 ›› Issue (10): 72-81.doi: 10.11660/slfdxb.20201005
摘要: :针对流域水文和污染物迁移转化过程模型受限于模型初始条件、边界条件、数值分辨率、参数敏感等及现有的深度学习模型对污染物通量时间序列数据解析缺少物理机制的问题,提出了基于长短时记忆神经网络(LSTM)的流域污染物通量预测模型。借助深度学习框架Keras,构建了多变量时间序列预测模型。选择气象数据作为流域产汇污过程的驱动因子、前期降雨量作为表征流域土壤干湿程度的指标,基于以上指标在不同降雨强度、月份、水文期的污染物通量的差异性分析,确定了模型的输入端特征;使用基于LSTM的时间模拟器识别了历史数据间的固有特征及输入特征间的复杂非线性关系;通过基于该模型的流域污染物日通量模拟值和实测值的比较,以及与流域分布式水文和污染物迁移转化过程模型(SWAT模型)的对比分析,评价了模型的预测性能,分析了不同输入特征的贡献率,验证了使用该模型预测流域污染物通量的可行性。该预测模型可为流域污染物通量预测提供一种新的思路。
京ICP备13015787号-3 版权所有 © 2013《水力发电学报》编辑部 编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |