|
||
水力发电学报 ›› 2020, Vol. 39 ›› Issue (10): 33-46.doi: 10.11660/slfdxb.20201002
摘要: 为提高流域中长期径流预测效果,提出径流综合指数构建、因子筛选和改进深度信念网络模型相结合的预测方法。首先研究不同水文站点(细粒度)月平均径流的一致性,构造流域径流综合指数(粗粒度),在较宏观层面研究流域水情丰枯变化;接着采用基于信息熵的因子筛选方法,获得影响流域水情丰枯变化的关键因子集,形成深度学习的输入;然后利用改进的深度信念网络(IDBN)模型进行预测。以雅砻江流域为例,将所建模型与多元线性回归、自回归移动平均、反向传播(BP)神经网络、支持向量机和传统深度信念网络等预测模型进行对比分析。结果表明:所提方法具有较好的实用性,且IDBN模型具有更好的预测速度和精度。研究结果可为流域中长期径流变化趋势预测提供参考。
京ICP备13015787号-3 版权所有 © 2013《水力发电学报》编辑部 编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |