水力发电学报
  2025年01月23日 星期四           首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2020, Vol. 39 ›› Issue (10): 1-32.doi: 10.11660/slfdxb.20201001

• •    下一篇

特约文章:水利大数据研究现状与展望

  

  • 出版日期:2020-10-25 发布日期:2020-10-25

Research status and prospects on water conservancy big data

  • Online:2020-10-25 Published:2020-10-25

摘要: 水利管理对象数量大、类型多、空间分布广、运行环境复杂、交织作用因素众多,对其进行全生命周期的精细化管控极其困难。将以关联分析为特点的水利大数据技术和以因果关系为特点的水利专业机理模型相结合,对海量多源的水利数据加以集成融合、高效处理和智能分析,并将有价值的结果以高度可视化方式主动推送给管理决策者,是解决水利对象精细化管控难题的根本途径。本文主要对水利大数据的概念认知、技术体系及其应用于水利规律解析、水利态势研判、水利趋势预测和水利决策优化的研究现状进行了综合分析,提出了水利大数据发展趋势为需求场景化、管理集成化、分析智能化、服务平台化、保障体系化。在水利大数据应用中,数据是根本,分析是核心,利用大数据技术提高水治理效率是最终目的,应深度挖掘水利业务管理需求,整合水灾害、水资源、水环境、水生态、水工程等领域全息数据,全面布局水利大数据的基础理论和核心技术研究,加快推进大数据技术与水利的深度融合,支撑我国水治理彻底转型升级。

关键词: 智慧流域, 智慧水利, 水利大数据, 数据分析与挖掘

Abstract: It is extremely difficult to carry out fine management and control of the full life cycle of water conservancy objects due to their large quantites, a wide range of types, a wide spatial distribution, complex operation environments, and many interrelated factors. To solve this problem, a fundamental approach is to combine a certain water conservancy big data technology characterized by association analysis with a professional mechanism model characterized by causality, integration and fusion, and efficient process; to analyze the massive and multi-source data intelligently; and to proactivily present useful highly-visualized results to management decision-makers. This paper provides a review on the concept of water conservancy big data and its technology system, along with an overview on the research status quo of natural law analysis, situation research and judgment, trend prediction, and decision optimization for water conservancy. We find that the future trend in big data technology development is toward scenario-based demands, management integration, analysis intelligence, service platforms, and guarantee systems. In water conservancy big data application, data are fundamental, analysis is the core, and the ultimate goal is to improve the efficiency of water treatment by using big data technology. Thus, we should deeply tap the real demands of water conservancy business management; integrate the panoramic data in the fields of water disasters, water resources, water environment, water ecology, and water engineering; comprehensively lay out the research on basic theories and core technologies, so as to accelerate the deep integration of big data technology with water conservancy and support the complete transformation and upgrade of water governance in China.

Key words: smart basin, smart water conservancy, water conservancy big data, data analysis and mining

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn