|
||
水力发电学报 ›› 2020, Vol. 39 ›› Issue (9): 23-32.doi: 10.11660/slfdxb.20200903
摘要: 流域大规模水库群的形成导致径流时空分布发生深刻变化,而不同水库群往往分属不同业主调度管理,上游水库群的下泄计划无法实时获取,给下游水库调度计划编制带来困难,并且影响下游水库运行安全。本文提出一种水库群运行自适应矩估计改进深度神经网络模拟方法,通过改善深度神经网络参数训练方式,从水库群历史运行数据中提取调度规则,在此基础上对水库群运行进行模拟,并结合实例研究,将结果与传统神经网络方法进行综合对比。结果表明,本文所提出的方法能够更好地模拟水库群运行,所模拟的观音岩、锦屏一级和二滩水库下泄流量平均相对误差分别为8%、11%和10%,均优于反向传播(BP)神经网络结果,可为探究调度计划未知情况下的水库运行规律提供新途径。
京ICP备13015787号-3 版权所有 © 2013《水力发电学报》编辑部 编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |