水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2020, Vol. 39 ›› Issue (6): 39-48.doi: 10.11660/slfdxb.20200604

• • 上一篇    下一篇

基于概率分布模型的流量预报及参数动态识别

  

  • 出版日期:2020-06-25 发布日期:2020-06-25

Runoff forecasting and dynamic parameter identification using probability distributed model

  • Online:2020-06-25 Published:2020-06-25

摘要: 概率分布模型(PDM)在国内流域的适用性及参数在不同径流阶段的变化研究较少。本文以浙江省两典型流域为例,建立PDM流量预报对比模型,根据参数动态识别分析确定不同时间窗口下参数变化,从而推断关键影响因子。研究结果表明:(1)PDM模型在两流域模拟结果较为满意,纳什效率系数均可达到0.7以上,且低流量为主的龙泉溪流域模拟效果明显优于高流量主导的金华江流域;(2)在不同洪水事件下PDM参数(经验参数α、b和最大蓄水能力Smax)均与前期土壤湿度显著负相关,与退水斜率有关的参数b在金华江流域与蒸发量显著正相关,而在龙泉溪流域与平均降雨负相关性显著;(3)受地表以下28 cm土壤湿度变化控制的参数α在洪峰及退水阶段识别度最大。

关键词: 概率分布模型, 参数动态识别分析, 径流预报, 识别度, 关键因子

Abstract: Studies on applicability of the probability distributed model (PDM) to the river basins in China and investigation of its parameter change across different flood stages are limited. This study compares the performance of PDM-based runoff forecasting for two typical basins in Zhejiang Province, and examines model parameter changes through dynamic identifiability analysis (DYNIA) to infer dominant controlling factors in rainfall-runoff process under different time windows. The results show that forecasting performance for the two basins is generally satisfactory with the Nash-Sutcliffe efficiency coefficient both over 0.7, and the model performs better in the Longquan basin dominated by low flows than the Jinhua basin dominated by high flows. Three parameters (empirical coefficientss α, b and maximum storage capacity Smax) of various flood events are negatively correlated to antecedent soil moisture. The recession slope-related b is positively correlated to average evaporation in the Jinhua basin but negatively to mean rainfall in the Longquan basin. Identifiability of α, a coefficient controlled by soil moisture at a depth of 28 cm, is generally higher for flood peak and recession periods.

Key words: probability distributed model, dynamic identifiability analysis, runoff forecasting, identifiability, dominant controlling factors

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn