水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2020, Vol. 39 ›› Issue (6): 18-27.doi: 10.11660/slfdxb.20200602

• • 上一篇    下一篇

基于EEMD近似熵的水电机组振动信号特征提取

  

  • 出版日期:2020-06-25 发布日期:2020-06-25

Vibration feature extraction for hydropower units based on ensemble empirical mode decomposition and approximate entropy

  • Online:2020-06-25 Published:2020-06-25

摘要: 对于水电机组非平稳非线性振动信号特征提取方法的研究近年来一直是水电机组故障诊断领域研究热点,特征提取的有效性直接关系到故障诊断的准确性。本文提出基于集合经验模态分解(EEMD)和近似熵的水电机组振动信号特征提取方法,将信号经EEMD分解后筛选得到的本征模态分量(IMF)近似熵特征值输入概率神经网络(PNN)进行模式识别。采用经验模态分解(EMD)和近似熵特征提取方法进行对比实验。识别结果表明:采用EEMD和近似熵的特征提取方法,能有效区分机组不同的运行状态,可为实际工程应用提供理论依据。

关键词: 水电机组振动信号, 集合经验模态分解, 近似熵, 特征提取, 概率神经网络

Abstract: In recent years, research on the feature extraction method of non-stationary nonlinear vibration signals has been a hot spot in the fault diagnosis of hydropower units, and its effectiveness is a key factor of fault diagnosis accuracy. This paper describes a new feature extraction method based on ensemble empirical mode decomposition (EEMD) and approximate entropy for vibration signals from hydropower units. It uses EEMD to obtain approximate entropy eigenvalues of the intrinsic mode function (IMF), and then inputs them into a probability neural network (PNN) for pattern identification. Results show this method can effectively distinguish the difference in the operation modes of a unit, laying a basis for fault diagnosis in engineering applications.

Key words: vibration signal of hydropower unit, ensemble empirical mode decomposition, approximate entropy, feature extraction, probability neural network

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn