水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2020, Vol. 39 ›› Issue (4): 110-120.doi: 10.11660/slfdxb.20200411

• • 上一篇    

利用CMV评估堆石料压实质量的神经网络模型

  

  • 出版日期:2020-04-25 发布日期:2020-04-25

Neural network model for evaluating compaction quality of rockfill materials by compaction meter value

  • Online:2020-04-25 Published:2020-04-25

摘要: 土石坝压实质量对大坝安全至关重要,通过压实质量评估模型可实现对压实质量实时监控。传统碾压施工采用固定的碾压方案,碾压参数在碾压过程中不改变,而在智能压实过程中,碾压参数根据当前压实状态进行优化调整,因此压实质量评估模型必须考虑碾压参数。通过堆石料现场碾压试验,分析了压实计值(compaction meter value,CMV)与堆石料相对密度和碾压参数的相关性。结果表明,CMV与堆石料相对密度具有较强相关性,可作为堆石料压实质量监测指标,碾压机振动频率和车速对CMV影响显著,行驶方向对CMV影响较小。最后基于现场试验和径向基(RBF)神经网络,建立了考虑碾压参数变化的堆石料压实质量评估模型。与试验结果对比表明该模型具有较高精度。

关键词: 堆石料, 压实质量, 评估模型, 碾压参数, 现场碾压试验, 径向基神经网络

Abstract: Compaction quality of earth-rock dams is crucial to dam safety, and for rockfill material it can be monitored in real time via a compaction quality assessment model. Rolling parameters are kept constant during traditional compacting construction using a fixed scheme, while in intelligent compaction they are adjusted and optimized based on the compaction state in-situ. Thus a good model for compaction quality assessment should take rolling parameters into account. This paper presents an analysis of the correlation of compaction meter value (CMV) with the relative density of rockfill materials and rolling parameters based on field compaction tests. Results show that CMV is strongly correlated with the relative density and it can be used as a good index for compaction quality assessment of rockfill materials. And it is significantly influenced by roller vibrating frequency and roller speed, while driving direction is an insignificant factor. Using the field test data and a radial basis function (RBF) neural network, we develop a compaction quality assessment model involving rolling parameters which achieves a high accuracy verified by the field test results.

Key words: rockfill materials, compaction quality, assessment model, rolling parameter, field compaction test, radial basis function neural network

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn