水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2020, Vol. 39 ›› Issue (4): 55-61.doi: 10.11660/slfdxb.20200406

• • 上一篇    下一篇

瞬变流中加权类动态摩阻模型的二阶近似求解

  

  • 出版日期:2020-04-25 发布日期:2020-04-25

Second-order approximate solution of weight-function unsteady friction model of transient flows

  • Online:2020-04-25 Published:2020-04-25

摘要: 与稳态摩阻模型相比,加权类动态摩阻模型充分考虑水力瞬变过程中速度历史和加速度对切应力的影响,从而能较准确描述压力衰减,被认为是一维水锤模拟中最为精确的数学模型。由于卷积积分项的复杂性以及一阶精度可满足大部分水锤问题,加权类动态摩阻模型的求解均是基于特征线法的一阶格式。为了提高模拟精度,本文尝试推导出卷积积分项的特征线法二阶近似求解格式,并通过实验数据验证其准确性。计算分析表明,与二阶近似求解格式相比,一阶求解格式存在计算误差,且随着计算网格长度、流体流速和黏滞性的增大而增大。

关键词: 瞬变流, 水锤, 加权类动态摩阻模型, 二阶近似求解, 计算误差

Abstract: For one-dimensional water hammer simulations, the weight-function unsteady friction model is considered to be the most accurate model compared with steady-state friction models, as it describes pressure attenuation accurately through fully considering the influence of the past velocity and acceleration on shear stress in hydraulic transients. Due to the complexity of convolution integral terms and the consideration that a first-order accurate solution is satisfactory for most of the problems, its previous solutions are based on the first-order methods of characteristics (MOC). To improve accuracy, this paper derives a second-order approximate solution of the MOC convolution integral, and verifies its accuracy against experimental data. Results show that the new scheme is second-order accurate and the first-order scheme leads to computational errors that increase with the increase in grid size, flow velocity and viscosity.

Key words: transient flow, water hammer, weight-function unsteady friction model, second-order approximate solution, calculation error

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn