水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2020, Vol. 39 ›› Issue (3): 106-120.doi: 10.11660/slfdxb.20200311

• • 上一篇    

基于Bootstrap和ICS-MKELM算法的大坝变形预测

  

  • 出版日期:2020-03-25 发布日期:2020-03-25

Prediction of dam deformation based on Bootstrap and ICS-MKELM algorithms

  • Online:2020-03-25 Published:2020-03-25

摘要: 传统大坝预测方法难以适应坝体变形序列的高维非线性特征,且仅能以点值的形式预测大坝变形,未能有效量化由数据随机噪声、输入样本的主观确定、参数的随机选择等引起的结果不确定性。针对上述问题,提出了基于Bootstrap和改进布谷鸟优化多核极限学习机(ICS-MKELM)算法的大坝变形预测模型,实现在精确预测大坝变形点值的同时,通过区间形式量化预测值的不确定性。首先,建立基于高精度多核极限学习机(MKELM)的大坝变形预测模型,该模型集成了核极限学习机(KELM)高效处理强非线性回归问题的优势和混合核泛化、学习能力强的特点,同时采用基于惯性权重和混沌理论改进的布谷鸟搜索(ICS)算法对多核极限学习机中核参数及正则系数进行优化,弥补模型易陷入局部最优的不足;其次,引入Bootstrap区间预测方法对模型和数据造成的不确定影响进行量化;最后,将所提模型应用于某实际大坝工程的变形预测,分析了不同训练样本数对模型预测精度的影响,同时通过与五种常用的预测算法进行对比,验证了本文模型具有一致性和优越性。

关键词: 大坝变形, 区间预测, 多核极限学习机, 改进布谷鸟搜索算法, 不确定性

Abstract: Traditional prediction methods are hardly applicable to the dam deformation featured with high dimensions and nonlinearity; they can predict the deformation at location points of a dam body, but fail to effectively quantify the uncertainties from data with random noise, subjectivity in input samples, and randomness in parameter selection. To solve this problem, we develop a new dam deformation prediction model based on the Bootstrap algorithm and an improved cuckoo search–multiple kernel extreme learning machine (ICS-MKELM) algorithm. The model quantifies the uncertainty through interval prediction and can realize accurate point prediction of dam deformation. First, based on high-precision MKELM, we construct a dam deformation prediction model that integrates the advantage of KELM efficiently handling strong nonlinear regression problems with the superiority of a hybrid kernel of high generalization and strong learning capability. And an ICS algorithm, based on the inertia weight and chaos theory, is adopted to optimize MKELM’s kernel parameters and regular coefficients, offsetting its disadvantage of easy falling into local optimization. Then, a Bootstrap interval prediction method is used to quantify the uncertainty from the model and data. Our model is applied to the deformation prediction of a real dam, and its consistency and superiority are demonstrated through an analysis on the influence of different sizes of the training sets on prediction accuracy and a comparison with other five commonly-used prediction algorithms.

Key words: dam deformation, interval prediction, multiple-kernel extreme learning machine, improved cuckoo search algorithm, uncertainty

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn