水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2019, Vol. 38 ›› Issue (8): 37-47.doi: 10.11660/slfdxb.20190804

• • 上一篇    下一篇

考虑动态水流滞时的梯级水库群日优化调度

  

  • 出版日期:2019-08-25 发布日期:2019-08-25

Short-term optimal operation of cascade reservoirs considering dynamic water flow hysteresis

  • Online:2019-08-25 Published:2019-08-25

摘要: 梯级水电站水库群短期优化调度中,通常忽略梯级水库间水流滞时的影响或将其作为常数进行考虑,实际上水流滞时是随着上级水库出库流量大小、河道槽蓄状态、区间入流等因素动态变化,想要准确预测下级水库入流是存在困难的。因此,采用多种方法筛选出影响下级水库入库流量的主要因素作为输入,利用神经网络建立输入与下级水库入库流量之间的动态函数关系。以锦东和官地水库梯级为例,建立考虑动态滞时的梯级水电站水库群日优化调度模型,并采用逐次优化法对采用动态滞时与固定滞时的优化方案进行求解和对比分析。结果表明:与固定滞时相比,动态滞时下能够更准确地描述梯级水库间的水流联系,同时能够在一定程度上增加梯级水电站水库群发电效益。

关键词: 短期优化调度, 水流滞时, 神经网络, 梯级水电站, 逐次优化法

Abstract: In short-term optimal operation of a cascade hydropower system, the influence of water flow hysteresis between cascade reservoirs is usually neglected or the time delay considered as a constant. However, water flow hysteresis changes dynamically with upstream reservoir outflow, river channel storage, interval inflow and other factors. It is difficult to accurately predict downstream reservoir inflow in the cases of dynamic water flows. In this study, we screen out main factors affecting the inflow of lower reservoirs using a variety of methods, and develop a prediction model of the lower reservoir inflow by employing artificial neural networks with these factors as inputs. In a case study of the Jindong and Guandi hydropower stations, a daily optimization scheduling model of cascade reservoirs is constructed considering the dynamic time delay and solved with a progressive optimization algorithm. The results show that compared with the constant time delay models, a dynamic time delay model of a cascade reservoir system is more accurate in modeling the water flow connection between the reservoirs and can give an optimized scheme that increases the system’s power generation efficiency to a certain degree.

Key words: short-term optimal operation, water flow hysteresis, artificial neural network, cascade reservoirs, progressive optimization algorithm

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn