水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2019, Vol. 38 ›› Issue (4): 234-245.doi: 10.11660/slfdxb.20190422

• • 上一篇    下一篇

基于ACDE-SVM的引水隧洞施工仿真参数动态更新

  

  • 出版日期:2019-04-25 发布日期:2019-04-25

Dynamic update of diversion tunnel construction simulation parameters based on ACDE-SVM

  • Online:2019-04-25 Published:2019-04-25

摘要: 施工仿真参数的更新对于施工仿真结果的准确性具有重要影响。然而目前的引水隧洞施工进度仿真参数更新多采用贝叶斯更新方法,存在需要假定参数分布形式,且无法得到预测参数的序列来描述参数动态变化过程的不足。针对上述问题,文章提出了基于自适应混沌差分进化支持向量机(adaptive chaos differential evolution- support vector machine,ACDE-SVM)的引水隧洞施工仿真参数动态更新方法。首先,采用自适应缩放因子和混沌理论对差分进化算法进行改进,提出自适应混沌差分进化算法(ACDE),ACDE算法既使搜索时间大大缩减,又弥补了差分进化算法后期局部搜索弱而使群体陷入早熟的缺陷;其次,基于现场施工参数时间序列,采用ACDE算法对支持向量机(SVM)进行参数寻优,进而构建基于ACDE-SVM的施工仿真参数预测模型,克服了传统SVM参数选择效率低、泛化能力弱的不足;最后,采用误差指标对模型性能进行评价,并与常规仿真方法及贝叶斯更新方法的仿真结果进行对比,验证基于ACDE-SVM的仿真参数动态更新方法的一致性和优越性。工程实例表明,该方法能够较好地拟合仿真参数随时间变化趋势,并能够提高引水隧洞钻爆法施工进度动态仿真的准确性。

关键词: 引水隧洞施工, 施工仿真参数, 差分进化支持向量机, 自适应缩放因子, 混沌理论

Abstract: Update of construction simulation parameters has a great impact on the accuracy of simulation results. Most previous studies use Bayesian theory to update these parameters but have to introduce an assumption of their probability distributions. Such methods cannot generate the series of predicted parameters necessary for describing their dynamic variations. To avoid these shortages, this paper presents a schedule simulation parameter update method for diversion tunnel construction, based on an adaptive chaos differential evolution-support vector machine (ACDE-SVM). First, we develop an ACDE algorithm by adopting an adaptive scaling factor and the chaos theory to improve the differential evolution, so that it can not only reduce the searching time but overcome the shortcoming of the differential evolution that is easy to become premature. Then, we optimize the SVM parameters using ACDE and the time series of onsite parameters, and construct an ACDE-SVM algorithm for predicting the schedule simulation parameters that can overcome the inefficiency of parameter selection and the weakness in generalization capability. Last, we adopt certain error indexes to evaluate this parameter update method and compare it with the conventional simulation and Bayesian method to demonstrate its consistency and superiority. A case study shows that the method can fit well the time trends of parameters and improve simulation accuracy.

Key words: diversion tunnel construction, construction simulation parameters, differential evolution-support vector machine, adaptive scaling factor, chaos theory

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn