水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2019, Vol. 38 ›› Issue (4): 108-118.doi: 10.11660/slfdxb.20190411

• • 上一篇    下一篇

基于熵-盲数的贝叶斯渗流参数反演分析研究

  

  • 出版日期:2019-04-25 发布日期:2019-04-25

Seepage parameter inversion based on Bayesian theory and entropy-blind numbers

  • Online:2019-04-25 Published:2019-04-25

摘要: 已有的贝叶斯参数反演方法仅考虑反演过程中的随机性,忽略了渗流参数的灰色和未确知等不确定性,本文提出一种基于熵-盲数理论的贝叶斯渗流参数反演方法。该方法在反演模型中引入熵-盲数理论,将待反演参数视为盲数,充分考虑反演过程中的不确定性,采用差分进化自适应Metropolis(DREAM)算法对渗流参数的后验分布进行推导,利用响应面模型替代渗流场数值模拟的正演模型,解决传统贝叶斯渗流参数反演方法需要大量调用正演模型进行运算才能达到收敛、计算效率较低的问题。通过算例分析及某碾压混凝土坝坝基的渗透系数反演,验证了该方法的有效性和准确性。

关键词: 渗流, 参数反演, 贝叶斯理论, 熵-盲数, 差分进化自适应Metropolis算法

Abstract: The existing parameter inversion methods based on Bayesian theory consider only the randomness in inversion process, neglecting the grey and unascertained uncertainties in seepage parameters. This paper presents an inversion method for estimating seepage parameters based on Bayesian theory and entropy-blind numbers. This new method introduces the entropy-blind number theory into the inversion model, taking the parameters to be inverted as blind numbers and fully considering the uncertainties in inversion process. We use a differential evolution adaptive metropolis (DREAM) algorithm to derive the posterior distribution of seepage parameters, and adopt a response surface model to replace the seepage simulation forward model, thereby avoiding a large number of forward model simulations in the traditional Bayesian seepage parameter inversion method. Our new method and its accuracy are validated through example analysis and a case study of permeability coefficient inversion for the foundation of a concrete gravity dam.

Key words: seepage, parameter inversion, Bayesian theory, entropy-blind number, differential evolution adaptive metropolis algorithm

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn