水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2019, Vol. 38 ›› Issue (3): 92-100.doi: 10.11660/slfdxb.20190310

• • 上一篇    下一篇

基于分形和概率神经网络的水电机组故障诊断

  

  • 出版日期:2019-03-25 发布日期:2019-03-25

Fault diagnosis for hydropower units based on fractal and probabilistic neural network

  • Online:2019-03-25 Published:2019-03-25

摘要: 水电机组振动信号属于非线性、非平稳信号,在不同尺度下呈现一定的相似性,是典型的分形信号。本文运用多重分形方法分析机组振动信号,提取信号的广义维数谱特征,并应用人工鱼群算法优化的概率神经网络进行故障诊断。诊断实例表明,多重分形和概率神经网络结合,能够准确辨别故障类型。与BP和RBF网络相比,该方法诊断识别率更高,速度更快,为机组运行维护人员提供更为可靠的参考依据。

关键词: 水电机组, 故障诊断, 多重分形, 概率神经网络, 人工鱼群算法

Abstract: Vibration signals from a hydropower unit are non-linear and non-stationary, but they are similar in different scales and typical of fractal features. This paper reports a multi-fractal method of fault diagnosis for hydropower units, analyzing the vibration signals, extracting their generalized dimensional spectral features, and diagnosing the fault with a probabilistic neural network optimized by the artificial fish swarm algorithm. A case study shows that this method, through combination of multi-fractal and probabilistic neural network, can accurately distinguish fault types. Compared with a BP or RBF network, it achieves a higher diagnostic recognition rate and faster speed, thus providing a more reliable tool for unit operation and maintenance personnel.

Key words: hydropower unit, fault diagnosis, multi-fractal, probabilistic neural network (PNN), artificial fish swarm Algorithm (AFSA)

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn