水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2019, Vol. 38 ›› Issue (1): 20-31.doi: 10.11660/slfdxb.20190103

• • 上一篇    下一篇

水电站分期发电调度规则提取方法

郭玉雪,方国华,闻 昕,黄显峰   

  • 出版日期:2019-01-25 发布日期:2019-01-25

Deriving rules for staged dispatching of hydropower stations

GUO Yuxue, FANG Guohua, WEN Xin, HUANG Xianfeng   

  • Online:2019-01-25 Published:2019-01-25

摘要: 针对水电站发电优化调度需求,提出了结合灰色关联度(GRA)和贝叶斯模型平均法(BMA)提取水电站水库分期发电调度规则方法。在确定性优化调度模型基础上,首先确定决策变量和影响因子属性集,基于GRA筛选分期影响因子;然后分别采用多元线性回归模型、支持向量机模型及BP神经网络模型拟合得到分期水电站水库发电调度规则;最后应用BMA进行多模型结果加权平均获取最终分期水电站水库发电调度规则。以新安江水电站为例,对本文的方法进行了验证。研究结果表明,基于GRA和BMA结合的调度规则提取方法不仅可以提供精度较高的均值模拟,而且能较好地保持确定性优化调度的发电效益。

关键词: 灰色关联度, 贝叶斯模型平均, 分期规则, 水电站水库, 发电调度, 模型不确定性

Abstract: Applying the grey relational analysis (GRA) and Bayesian model averaging (BMA) method, this paper develops a new method for dispatching the power production of a hydropower station. We first determine decision variables and impact factor sets using GRA and the results of a deterministic optimal dispatch model, and then obtain rules for staged hydropower production dispatching using a multivariate linear regression model, a support vector machine, and a back propagation neural networks . Finally, the rules for monthly power dispatching are derived using BMA to take weighted average of the models’ results. Application in a case study of the Xinanjiang hydropower station shows that our method is more accurate and can achieve an efficiency of hydropower production comparable to that of deterministic optimal dispatch.

Key words: grey relational analysis, Bayesian model averaging, staged dispatching rules, hydropower
station,
power production, model uncertainty

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn