水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2018, Vol. 37 ›› Issue (11): 24-35.doi: 10.11660/slfdxb.20181103

• 当期目录 • 上一篇    下一篇

基于混合量子粒子群算法的梯级水电站群调度

  

  • 出版日期:2018-11-25 发布日期:2018-11-25

Hybrid quantum-behaved particle swarm optimization for operation of cascade hydropower plants

  • Online:2018-11-25 Published:2018-11-25

摘要: 针对标准量子粒子群(QPSO)算法在求解复杂梯级水电站群联合调度问题时存在的早熟收敛、停滞寻优等不足,提出了一种耦合两重改进策略优势的混合量子粒子群(HQPSO)算法:首先对个体极值按照一定的概率进行变异搜索操作,以增加个体多样性、强化种群全局开采能力;而后建立外部档案集合来存储进化过程中的部分精英个体,利用基于动态概率辨识机制的单纯形算子指导外部档案集中的个体开展邻域寻优,以提高算法搜索能力、避免陷入局部最优。乌江流域实践结果表明:HQPSO算法的收敛速度与全局搜索能力得到增强,有效克服了QPSO的缺陷与不足,具有一定的工程实际应用价值。

Abstract: In solving the joint scheduling problem of cascade hydropower stations, the standard quantum-behaved particle swarm optimization (QPSO) algorithm suffers from premature convergence and local trapping, among other shortcomings. This paper presents a hybrid QPSO (HQPSO) that combines the advantages of the two-fold improvement strategy. This new method first does mutation search for individual extremes at a given probability to increase the diversity of individuals and enhance the global exploiting capability of the population. Then, it establishes an external archive set to conserve certain particles found in the evolutionary process. Finally, it uses the Nelder-Mead operator for dynamic probability identification to help particles searching in the neighborhood, improving its searching capability and avoiding falling into a local optimum. Application to the Wu River shows that the HQPSO is faster in convergence and global searching and practically applicable, avoiding the shortcomings of QPSO.

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn