水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2018, Vol. 37 ›› Issue (11): 15-23.doi: 10.11660/slfdxb.20181102

• 当期目录 • 上一篇    下一篇

基于Box-Cox变换的贝叶斯概率水文预报效率

  

  • 出版日期:2018-11-25 发布日期:2018-11-25

Efficiency of Bayesian probabilistic hydrological forecast system based on Box-Cox transformation

  • Online:2018-11-25 Published:2018-11-25

摘要: 针对贝叶斯概率预报模型(Bayesian processor of forecasts,BPF)中输入数据的正态转换问题,探讨了Meta-Gaussian模型(MG)和Box-Cox变换(BC)对BPF模型性能的影响。首先利用MG和BC分别对BPF模型输入数据进行正态转换,然后分别建立BPF-MG和BPF-BC模型进行概率预报,最后对BPF-MG和BPF-BC在不同预见期和不同数据样本条件下的预报能力进行了分析。结果表明,当数据样本较少时,BPF-MG具有较高的稳定性,但BC转换比MG更简单,BC变换系数非常敏感;当数据样本增多后,BC变换的转换系数稳定,BPF-BC预报质量提高。

Abstract: Aimed at the normal transformation of input data in the Bayesian processor of forecasts (BPF), the impacts of the meta-Gaussian model (MG) and Box-Cox transformation (BC) on the performance of a BPF model are compared and discussed. We make the normal transformation of the BPF model’s input data using MG and BC separately, construct a BPF-MG model and a BPF-BC model for probability forecasting, and analyze the forecasting capabilities of these two models in the conditions of different forecast periods and different data sizes. Results indicate that when the number of data samples is small, BPF-MG can achieve a higher stability through its complicated MG procedure, but it involves more complicated transformation than the BPF-BC model that has a very sensitive transform coefficient. With an increasing data size, the BPF-BC model is improved in forecasting capability and its BC coefficient becomes more stable.

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn