水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2018, Vol. 37 ›› Issue (8): 20-28.doi: 10.11660/slfdxb.20180803

• 当期目录 • 上一篇    下一篇

基于正则极限学习机的非平稳径流组合预测

  

  • 出版日期:2018-08-25 发布日期:2018-08-25

Hybrid forecasting model for non-stationary runoff based on regularized extreme learning machine

  • Online:2018-08-25 Published:2018-08-25

摘要: 针对径流时间序列固有的强非线性和非平稳性特征,提出了一种将集合经验模式分解(EEMD)、样本熵(SE)和正则化极限学习机(RELM)相结合的非平稳日径流预测方法(ES-RELM)。为充分提取径流序列的局部信息以提高预测精度,利用EEMD-SE将径流序列分解为一系列差异度明显的子序列,然后根据各子序列的迥异特征构建了不同的RELM模型对各子序列进行预测,最后将各个子序列的预测结果叠加从而得到最终预测结果。将该模型应用于金沙江下游控制站屏山站的日径流预报中,与九种模型对比结果表明,该方法能有效提高日径流预报精度,是一种高效稳定的径流预报模型,为实现高精度实时径流预报提供了可能。

Abstract: In this study, a novel hybrid model, named as ES-RELM, based on ensemble empirical mode decomposition (EEMD), sample entropy (SE), and regularized extreme learning machine (RELM), is developed for daily runoff forecasting featured with nonlinearity and non-stationarity. To extract more reliable information from runoff time series, EEMD-SE is used to decompose the runoff series to a set of sub-series with different complexity, then each sub-series is forecasted independently by a different RELM model, and finally all the sub-series forecasts are combined into an overall forecast of the runoff time series. It is applied in a case study to forecast the daily runoff at Pingshan station, a control station of the lower Jinsha River, and compared in detail with nine other models. Results indicate that our ES-RELM effectively improves the accuracy of daily runoff forecasting and is an efficient, stable forecasting model, thus laying a basis for high-precision real-time runoff forecasting.

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn