水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2018, Vol. 37 ›› Issue (1): 21-30.doi: 10.11660/slfdxb.20180103

• 当期目录 • 上一篇    下一篇

梯级水电站优化调度的改进社会情感优化算法

  

  • 出版日期:2018-01-25 发布日期:2018-01-25

Improved social emotional optimization algorithm for optimal operation of cascade hydropower stations

  • Online:2018-01-25 Published:2018-01-25

摘要: 探索新的调度模型求解方法一直是水库优化调度研究的热点之一。社会情感优化算法(SEOA)是一种新兴的启发式智能优化算法,但目前在水库优化调度中未见应用。将SEOA应用于梯级水电站发电优化调度中,并针对算法初始种群随机生成造成的初始解代表性低,引入了初始种群均匀设计,针对部分个体过早收敛导致的种群活力低、算法易于局部收敛,制定了种群淘汰策略,从而建立了改进社会情感优化算法(改进SEOA)。实例表明,在梯级水电站发电优化调度模型的求解中,改进SEOA搜索效率高、寻优能力强、稳定性好。

Abstract: Exploring new solving methods has always been one of the hotspots for the study on optimal reservoir operation. The social emotional optimization algorithm (SEOA) is a new heuristic intelligent optimization algorithm, but it has not been applied to reservoir operation yet. In application of SEOA to the operation of cascade hydropower stations, this study formulates an initial population uniform design to overcome the low representativeness of initial population caused by stochastic generation, and develops a population elimination strategy aiming at the low activity of population and the tendency of local convergence caused by some individuals’ premature convergence. Thus an improved social emotional optimization algorithm (improved SEOA) is achieved. A case study shows that this algorithm is efficient and stable, and it has a great search capability in solving the optimal operation models of cascade hydropower stations.

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn