水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2017, Vol. 36 ›› Issue (12): 19-27.doi: 10.11660/slfdxb.20171203

• 当期目录 • 上一篇    下一篇

水库多目标调度模型及算法研究

  

  • 出版日期:2017-12-25 发布日期:2017-12-25

Multi-objective reservoir operation model and algorithm

  • Online:2017-12-25 Published:2017-12-25

摘要: 协调水库发电、灌溉和生态环境效益是众多水库决策者面临的棘手问题。本文以考虑发电保证率要求的总发电量最大、下游灌溉和生态流量需水满足度最大为目标建立水库多目标调度模型,以动态规划和离散微分动态规划为计算核心,在分别对发电保证率、灌溉需水满足度和生态环境需水满足度建立惩罚函数的基础上,提出求解多目标模型的变惩罚系数法(VPC),并应用VPC法进行模型求解,通过筛选得到多目标非劣解的Pareto前沿。通过与非支配排序遗传算法II(NSGA-II)计算结果进行对比,表明VPC算法可以得到更高质量的非劣解集。实例研究表明,该模型和求解方法具有较好的适应性和较强的实用价值,可以为水库调度管理者提供重要的决策参考。

Abstract: Multi-objective optimal reservoir operation modeling is an effective method to deal with the problem faced by reservoir decision makers ? how to coordinate the benefits among power generation, irrigation and eco-environment of the reservoir. This study develops a multi-objective model for reservoirs that are operated with conflicting objectives of maximizing energy production and the water demand satisfaction rates for irrigation and ecological flow, taking into account the reliability of power generation. To solve the model, we present a new multi-objective optimization method of variable penalty coefficient (VPC). And a well-distributed Pareto frontier of multi-objective non-inferior solutions is obtained by screening from the feasible solutions. Comparison with the non-dominated sorting genetic algorithm Ⅱ (NSGA-Ⅱ) shows that this VPC algorithm performs better in seeking non-inferior solutions. Application in a case study shows that the algorithm and multi-objective model are satisfactory in adaptability and applicability to reservoir operation decision.

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn