水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2017, Vol. 36 ›› Issue (10): 45-55.doi: 10.11660/slfdxb.20171005

• 当期目录 • 上一篇    下一篇

基于小波支持向量机的径流预测性能优化分析

  

  • 出版日期:2017-10-25 发布日期:2017-10-25

Performance optimization analysis for inflow prediction using wavelet Support Vector Machine

  • Online:2017-10-25 Published:2017-10-25

摘要: 中长期径流预测是水库调度的重要前提和难点问题。在数据驱动预测模型已有研究基础上,提出了基于小波分解的参数优化支持向量机(WD-SVM-PSO)预测模型,实现了对历史径流过程的分频预处理、分类训练、参数优化及交叉验证,从样本数据、模型参数、训练机制三方面对预测模型性能进行优化。采用淮河流域响洪甸水库1959—2014年径流过程进行模型验证,结果表明:WD-SVM-PSO模型预测合格率为93%,且具有良好的泛化性能,有效规避了过拟合现象;进一步通过对照试验仿真,定量揭示了耦合预测模型三方面要素所起的作用大小依次为:样本数据预处理>训练模型>模型参数。该结论可为分析和完善数据驱动径流预测模型、提高径流预测精度和可靠性提供参考借鉴。

Abstract: Mid-long term inflow prediction is a critical prerequisite and complicated issue for reservoir operation. This paper presents a wavelet decomposition parameter optimized support vector machine (WD-SVM-PSO) model based on previous studies of the data driven prediction theory, including historical inflows frequency division pre-process, classification based training, parameter optimization and cross validation. Its performance is optimized in terms of dataset refining, model parameters calibration, and training mechanism. Application to the annual inflows of the Xianghongdian reservoir in the Huai River basin during 1959-2014 shows that 93% of its predictions are acceptable due to its better generalization performance and it can significantly reduce the overfitting. And the controlled trial simulation reveals the effect of three key elements, ranked from top to down: data set pre-process, prediction model, model parameters. This study helps analyze and improve data driven prediction models and their accuracy and reliability of inflow prediction.

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn