水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2017, Vol. 36 ›› Issue (9): 10-20.doi: 10.11660/slfdxb.20170902

• 当期目录 • 上一篇    下一篇

新拌RCC单轴压缩试验的PFC模拟及细观参数反演

  

  • 出版日期:2017-09-25 发布日期:2017-09-25

PFC modelling of fresh RCC uniaxial compression tests and inversion of meso-structural parameters

  • Online:2017-09-25 Published:2017-09-25

摘要: 为从细观角度研究碾压混凝土(RCC)坝料的压实机理,需确定被压RCC的细观参数,本文通过颗粒流程序(Particle Flow Code,PFC)模拟新拌RCC单轴压缩试验来反演细观参数。首先,为真实模拟实际RCC的配比和骨料级配,提出了基于筛分统计的各级颗粒数目确定方法,并采用三维扫描技术进行不规则骨料的精细建模;接着,提出了新拌RCC单轴压缩的PFC模拟方法,并建立了代替复杂PFC正分析过程的BP神经网络;最后,以单轴压缩物理试验的应力应变曲线作为标定目标,提出了基于自适应差分进化算法的参数反演方法。实例表明,反演的参数经PFC模拟所得压缩曲线与物理试验曲线吻合较好。本文所建PFC模型及反演的细观参数可为进一步研究RCC的振动压实过程与层间结合的细观机理提供基础。

Abstract: To study RCC compaction mechanisms from the mesoscopic perspective, inversion of meso-structural parameters was calculated by modelling uniaxial compression tests of fresh roller-compacted concrete (RCC) using the Particle Flow Code (PFC). First, basing on sieving statistical results, we developed a method for determination of the number of particles with different sizes so as to simulate the mixture proportion and aggregate gradations of RCC, and simulated the geometric shapes of irregular aggregates using a 3D laser scanning technology. Then, a new method for PFC simulation of RCC uniaxial compression tests was developed, and a BP neural network was established to replace complicated PFC simulations. Finally, we present an inversion method of RCC meso-structural parameters along with its solution algorithm of adaptive differential evolution (ADE), which takes the stress-strain curve of a compression test as its calibration target. A case study shows that the uniaxial compression curves, achieved from the PFC simulation using the inversed parameters, agree well with the test curves. The PFC model and inversed meso-parameters presented in this paper would lay a theoretical basis for further studies on RCC vibrating compaction and its mesoscopic mechanism of layers bonding.

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn