|
||
水力发电学报 ›› 2017, Vol. 36 ›› Issue (8): 34-42.doi: 10.11660/slfdxb.20170804
摘要: 径流预报对区域水资源开发与管理具有重要的作用,当前的研究主要聚焦在先进的算法而忽视了丰富预报因子对提高径流预报精度的贡献。本研究以泾河径流为例,将遗传算法(GA)和回归支持向量机模型耦合,建立了改进的支持向量机回归模型(GA-SVR)。预报变量在常规预报因子(降雨与蒸发)的基础上增加了对径流影响较强的大气环流异常因子。结果表明,预测变量未含大气环流异常因子的情况下,GA-SVR模型的预测精度和泛化能力皆优于神经网络模型(ANN);考虑大气环流异常因子后,GA-SVR模型预测精度进一步提高。由此说明,SVR模型耦合GA后可提高月径流的预报精度,考虑大气环流异常因子后其预测精度可进一步提高。
京ICP备13015787号-3 版权所有 © 2013《水力发电学报》编辑部 编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |