水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2017, Vol. 36 ›› Issue (8): 12-21.doi: 10.11660/slfdxb.20170802

• 当期目录 • 上一篇    下一篇

基于联合互信息的水文预报因子集选取研究

  

  • 出版日期:2017-08-25 发布日期:2017-08-25

Selecting hydrological forecast factor sets based on joint mutual information

  • Online:2017-08-25 Published:2017-08-25

摘要: 预报因子集是预报因子的集合。作为预报信息的来源,因子集对预报结果有着重要影响,增加因子集包含的预报信息量能够有效地提高预报精度。针对现有方法侧重于对单个预报因子进行研究的不足,本文从整体的角度考虑,提出了基于联合互信息的预报因子集选取方法。首先介绍了互信息并将其扩展到高维情景,引出条件互信息与联合互信息,并采用Parzen窗估计法对其进行计算;其次以水文预报为背景,建立最大联合互信息模型,根据条件互信息进行求解,并耦合反向传播(BP)神经网络对计算结果进行检验;最后对雅砻江流域泸宁水文站进行实例计算,并将计算结果与现行方法进行比较。结果表明,新方法能够为预报模型提供更加科学的输入,提高模型的预报精度。

Abstract: A forecast factor set, or a certain combination of forecast factors, is crucial to forecasting accuracy, since its size determines the number of information sources for the forecasting. Considering the shortcoming in previous methods that focused on the cases of one single factor, this paper, from a holistic perspective, presents a method for selecting hydrological forecast factor set based on joint mutual information. First, we introduce the concept of mutual information and extend it to high-dimensional cases. Both conditional mutual information and joint mutual information are illustrated and calculated by the Parzen window estimation method. Then, using conditional mutual information, a maximum joint mutual information (JMI) model is constructed and solved for application of hydrological forecasting. Finally, the results of this method are tested via calculations of back propagation (BP) neural network and compared with those of previous methods in a case study of the Luning hydrological station in the Yalong River basin. This work shows that the new method can generate more appropriate inputs for hydrological forecasting models.

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn