水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2017, Vol. 36 ›› Issue (7): 83-91.doi: 10.11660/slfdxb.20170709

• 当期目录 • 上一篇    下一篇

基于EEMD和SOM神经网络的水电机组故障诊断

  

  • 出版日期:2017-07-25 发布日期:2017-07-25

Fault diagnosis of hydroelectric sets based on EEMD and SOM neural networks

  • Online:2017-07-25 Published:2017-07-25

摘要: 针对水电机组振动信号的非平稳性和特殊性,提出一种基于集合经验模态分解(EEMD)的奇异谱熵和自组织特征映射网络(SOM)相结合的故障诊断方法。首先采用EEMD对振动信号进行分解,得到本征模态函数(IMF);随后进行奇异谱分解,得到反映振动信号的动态特征向量——奇异谱熵;最后将得到的特征向量输入经过训练的SOM神经网络中进行故障自动识别。结果表明:该方法可以准确地提取机组故障特征,具有更高的识别精度和更快的计算速度。

Abstract: Aimed at the non-stationarity and particularity of the vibration signals of hydroelectric sets, a new fault diagnosis method combining singular spectrum entropy based on ensemble empirical mode decomposition (EEMD) with a self-organizing feature map network (SOM) is presented. First, EEMD was used to decompose the vibration signals of a hydroelectric unit to obtain their intrinsic mode function (IMF), and then singular spectrum decomposition was performed to obtain their singular spectrum entropy: a dynamic eigenvector that characters the signals. Finally, this feature vector was input into a trained SOM neural network for automatic recognition of the fault. The results show that this method can extract the fault characteristics of the unit accurately and it has a higher recognition accuracy and faster calculation speed.

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn