水力发电学报
            首 页   |   期刊介绍   |   编委会   |   投稿须知   |   下载中心   |   联系我们   |   学术规范   |   编辑部公告   |   English

水力发电学报 ›› 2017, Vol. 36 ›› Issue (5): 47-57.doi: 10.11660/slfdxb.20170506

• 当期目录 • 上一篇    下一篇

梯级水电站群优化调度多目标量子粒子群算法

  

  • 出版日期:2017-05-25 发布日期:2017-05-25

Multi-objective quantum-behaved particle swarm optimization for operation of cascade hydropower stations

  • Online:2017-05-25 Published:2017-05-25

Abstract: This paper describes a method of multi-objective quantum-behaved particle swarm optimization (MOQPSO) based on quantum evolutionary mechanism for multi-objective operation of cascade hydropower stations. On the basis of the quantum-behaved particle swarm optimization (QPSO), this new method adopts external archive collection to store non-dominated particles and implements maintenance and dynamic update of the collection using individual dominance relations. It uses individual leadership to choose the previous best position of the whole particle population and the previous best position of each particle so that diversity in individual evolution directions can be maintained during the search. A chaos mutation operator can be added to the method to further enhance its local search capability and global convergence performance. The method has been applied in the operation of hydropower stations in the Wu River basin. The results indicate that MOQPSO could generate a Pareto solution set that combines the considerations of reliability and benefits and thus it would lay a theoretical basis for decision making.

京ICP备13015787号-3
版权所有 © 2013《水力发电学报》编辑部
编辑部地址:中国北京清华大学水电工程系 邮政编码:100084 电话:010-62783813
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn